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We investigate the existence of the pure spin ratchet effect in a dissipative quasi-one-dimensional system
with Rashba spin-orbit interaction. The system is additionally placed into a transverse uniform stationary
in-plane magnetic field. It is shown that the effect exists at low temperatures and pure spin currents can be
generated by applying an unbiased ac driving to the system. An analytical expression for the ratchet spin
current is derived. From this expression it follows that the spin ratchet effect appears as a result of the
simultaneous presence of the spin-orbit interaction, coupling between the orbital degrees of freedom and spatial
asymmetry. In this paper we consider the case of a broken spatial symmetry by virtue of asymmetric periodic
potentials. It turns out that an external magnetic field does not have any impact on the existence of the spin
ratchet effect but it influences its efficiency, enhancing or reducing the magnitude of the spin current.
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I. INTRODUCTION

It is well known that a directed stationary flow of particles
in a system can be created by unbiased external forces. In
general this possibility arises when the system is not invari-
ant under reflections in real space. This fact is mainly inde-
pendent of the mechanics which underpins the particle mo-
tion, classical or quantum. However, the microscopic origin
of this effect, conventionally called the ratchet effect, is dif-
ferent in the classical and quantum case. One principle
source of that difference is quantum-mechanical tunneling
which does not have analogs in the classical mechanics. Cor-
respondingly, one usually distinguishes between classical
and quantum ratchet effects. In this paper we concentrate on
the latter one in a dissipative system. Such dissipative ratchet
systems act as Brownian motors1,2 turning Brownian into
directed motion. The existence of the ratchet effect in a quan-
tum dissipative one-dimensional �1D� system which lacks
the spatial symmetry has been first theoretically predicted in
Ref. 3. Later, within a tight-binding model where the lowest
bands are narrow, it has been disclosed that a ratchet state of
the particle transport can only be achieved when at least the
two lowest Bloch bands contribute to transport.4 To obtain
the ratchet effect in systems with weak periodic potentials, at
least two harmonics of the potential should enter the dynami-
cal equations.5 Rectification can also take place in a single-
band tight-binding model where the spatial asymmetry is
concealed from the electron dynamics. One way to achieve
this is to use unbiased external forces with harmonic
mixing.6

Coherent charge ratchets based on molecular wires with
an asymmetric level structure of the orbital energies were
proposed in Ref. 7. In this case weak dissipation originates
from a weak coupling between the wire edges and leads
which represent fermionic reservoirs. In contrast to the sys-
tems described above, in this system there is no dissipation
in the wire. The ratchet effect is a result of the dissipative
coupling of the wire to fermionic baths.

In a different branch of condensed matter, a research field
has emerged during the last decade, namely, spintronics,

where one tries to make use of the spin degree of freedom of
a particle instead of only the charge one. One essential dif-
ference between spin and charge is that a particle can have
more than one spin state while it has only one charge state.
In the context of transport, it is important that the spin state
of a particle can strongly depend on the transport conditions,
in particular on the transport direction, as it happens, for
example, in systems with spin-orbit interaction. This fact has
founded an arena for different spin devices used to store,
transform, and transfer miscellaneous information. The pos-
sibility to transfer the spin separately from charge plays an
important role. This can be implemented by so-called pure
spin currents, that is, spin currents which are not accompa-
nied by charge currents. Thus the generation of such currents
has been extensively discussed. Among different mecha-
nisms of spin-orbit interaction Rashba spin-orbit interaction
�RSOI� �Ref. 8� plays a distinguished role because it pro-
vides an opportunity to control the spin-orbit coupling
strength by an external electric field. The change in the band
structure spawned by the spin-orbit interaction leads to one
of the most remarkable effects in spintronics, the intrinsic
spin-Hall effect, first predicted by Murakami et al.9 for hole-
doped semiconductors with the spin-orbit interaction of the
effective Luttinger model for holes and later by Sinova et
al.10 in a high-mobility two-dimensional electron gas
�2DEG� with RSOI. The spin current which results from the
intrinsic spin-Hall effect is pure and its experimental detec-
tion was discussed, e.g., by Wunderlich et al.11 Another kind
of spin-Hall effect, the extrinsic spin-Hall effect, is a result
of the spin-orbit interaction as well. The spin currents related
to the extrinsic spin-Hall effect are also pure. Such pure spin
currents were experimentally detected through optical mea-
suring of electron-spin accumulation at the edges of the
samples12 and through the reciprocal spin-Hall effect13,14 in
Ref. 15. Another approach to create pure spin currents is to
use polarized light. For example, in noncentrosymmetric
semiconductors one-photon absorption of linearly polarized
light induces pure spin currents.16 The pure spin-current re-
sponse to linearly and circularly polarized light irradiations,
exciting electrons from valence bands into the conduction
bands, was studied by Li et al.,17 and by Zhou and Shen18 for
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2DEGs with RSOI. An alternative technique of getting pure
spin currents is quantum spin pumping. The idea of quantum
spin pumping comes from the general idea of electron
pumping.19 Electron pumping assumes that in a given system
any voltage bias is absent and the particle flow is a result of
a cyclic variation in at least two parameters of this system.
When the electron spin is involved due to some mechanisms,
various quantum spin pumps emerge. For example, spin
pumps based on electronic interactions,20 magnetic
barriers,21 and carbon nanotubes22 have been discussed. A
spin pump based on a quantum dot was experimentally
implemented by Watson et al.23 The pure spin-current gen-
eration using the spin ratchet effect in coherent and dissipa-
tive systems with RSOI was investigated in Refs. 24 and 25,
respectively. The spin ratchet effect in the presence of a non-
uniform static magnetic field without spin-orbit interaction,
the Zeeman ratchet effect, was studied in Ref. 26 for coher-
ent quantum wires formed in a 2DEG. However, the spin
ratchet effect in a dissipative system in an external magnetic
field has not been considered up to now.

In this paper we extend the results of Ref. 25 to include a
transverse in-plane uniform stationary magnetic field. Spe-
cifically, we consider noninteracting electrons in a quantum
wire formed by a harmonic transverse confinement in a
2DEG with RSOI. The electrons are also subject to a 1D
periodic potential along the wire direction and the in-plane
magnetic field perpendicular to the wire. An orbital coupling
between this originally isolated system and an external envi-
ronment causes dissipative processes affecting indirectly the
spin dynamics through RSOI.

An external ac driving originates in our work from an
applied ac electric field. We show that for such a driving the
net stationary charge current is strongly suppressed if the
transport is governed only by electrons of the Bloch sub-
bands related to the same Bloch band which would result
from the corresponding truly 1D problem without RSOI.
However, at the same time and under the same conditions, a
net stationary spin current turns out to be activated in a spa-
tially asymmetric situation, and for finite values of the spin-
orbit coupling strength and the coupling strength between the
orbital degrees of freedom. The magnetic field does not de-
stroy this picture but it can partly reduce or on the contrary
enhance the ratchet effect.

The paper is organized as follows. In Sec. II we describe
a model within which a ratchetlike behavior of the spin
transport can be achieved and present a master equation in
terms of populations and transition rates between the basis
states used to calculate the charge and spin currents. These
basis states are then thoroughly discussed in Sec. III. A tight-
binding model is formulated in Sec. IV. In Sec. V we present
the transition rates and their properties. Finally, in Sec. VI
we derive analytical expressions for the charge and spin cur-
rents and explore the spin ratchet effect in the system.

II. FORMULATION OF THE PROBLEM

The full Hamiltonian of our problem is

Ĥfull�t� = Ĥ + Ĥext�t� + Ĥbath, �1�

where Ĥ is the Hamiltonian of the isolated periodic system,

Ĥext�t� describes an external driving, and Ĥbath represents the
term responsible for dissipative processes.

The isolated quasi-1D periodic system is formed in a
2DEG �x-z plane� with RSOI using a periodic potential along
the x axis and a harmonic confinement along the z axis. The
whole system is in a uniform stationary magnetic field along
the z axis:

Ĥ =
�2k̂2

2m
+

m�0
2ẑ2

2
−

�2kso

m
��̂xk̂z − �̂zk̂x� + U�x̂��1 + �

ẑ2

L2�
− g�B�̂zH0, �2�

where H0 is the z component of the magnetic field H0
= �0,0 ,H0�, and we have used the gauge in which the com-
ponents of the vector potential are Ax=−H0y, Ay =Az=0
�Landau gauge�. Additionally, we have taken into account the

fact that in a 2DEG y=0. In Eq. �2� the operator k̂ is related

to the momentum operator p̂ as p̂=�k̂, �0 is the harmonic
confinement strength, kso is the spin-orbit interaction
strength, � is the strength of the coupling between the orbital
degrees of freedom x and z, g is the electron spin g-factor, �B
is the Bohr magneton, and U�x̂� denotes the periodic poten-
tial with period L,

U�x + L� = U�x� . �3�

In the following we assume that the periodic structure is
subject to an external homogeneous time-dependent electric
field. Only the x component of the electric field vector is
nonzero, that is, the electric field is parallel or antiparallel to
the x axis. Experimentally this can be implemented using, for
example, linearly polarized light. The external force thus
couples only to the x component of the electron coordinate
operator:

Ĥext = − F�t�x̂ , �4�

where the force F�t� is unbiased. In this work we use the
time dependence

F�t� = F cos���t − t0�� . �5�

The term “unbiased external force” should not be confused
with voltage bias. An external force is called unbiased if it is
periodic in time and its mean value, that is, its average over
one period, is equal to zero. It is obviously our case as one
can see from Eq. �5�.

The system is also coupled to an external bath. In the
present work we assume the transverse confinement to be
strong enough so that the probabilities of direct bath-excited
transitions between the transverse modes are negligibly
small. In other words, the wire is truly 1D from the point of
view of the bath which directly changes only the dynamics
along the wire. Thus in our model the external environment
couples to the electronic degrees of freedom only through x̂.
The bath itself as well as its interaction with the quantum
wire are described within the Caldeira-Leggett model,27,28
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Ĥbath =
1

2 �
�=1

NO � p̂�
2

m�

+ m���
2�x̂� −

c�

m���
2 x̂�2	 . �6�

The bath is fully characterized by its spectral density defined
as

J��� 

	

2 �
�=1

NO c�
2

m���


�� − ��� . �7�

It is important to emphasize that, due to the spin-orbit inter-
action and orbit-orbit coupling, the direct dissipative interac-
tion between the longitudinal dynamics in the wire and the
external environment has an indirect impact on the transition
rates between different transverse modes. The transverse dy-
namics in the wire indirectly feels the presence of the exter-
nal bath through the spin-orbit interaction and orbit-orbit
coupling.

The dynamical quantities of interest are the charge and
spin currents. Specifically, the longitudinal charge current
JC�t� is given �see, for example, Ref. 4� as a statistical aver-

age of the longitudinal charge current operator ĴC�t�, i.e., the
product of the velocity operator v̂�t� and the elementary elec-
tronic charge −e,

ĴC�t� = − ev̂�t� , �8�

JC�t� = − e
d

dt
Tr�x̂�̂�t�� , �9�

where �̂�t�=TrbathŴ�t� is the reduced statistical operator of

the system, that is, the full one Ŵ�t� with the bath degrees of
freedom traced out.

For the longitudinal spin-current operator, we use the
definition suggested by Shi et al.,29

ĴS
i �t� =

d

dt
��̂ix̂� , �10�

which was further developed and applied to a two-
dimensional hole gas by Zhang et al.30 The advantage of this

definition over the conventional one �ĴS
i = �̂iv̂� is that, using

the corresponding spin current,

JS
i �t� =

d

dt
Tr��̂ix̂�̂�t�� , �11�

the continuity equation for the spin density can often be writ-
ten without a source term, which means that the spin current
defined in this way is conserved. This conserved spin current
can be uniquely related to the spin accumulation at a sample
boundary. The out-of-plane polarized spin accumulation can
experimentally be measured with Kerr rotation microscopy31

or the Faraday rotation technique.32 The in-plane spin polar-
ization is not directly measured by Kerr rotation microscopy
but it can still be scanned by a magneto-optic Kerr micro-
scope using, e.g., the cleaved edge technology as discussed
by Kotissek et al.33 Even when the continuity equation con-
tains a source term, there is still one advantage of the spin-
current operator definition �Eq. �10��. This definition leads to
a very reasonable physical result: the corresponding spin cur-

rent in Eq. �11� vanishes in insulators. In Sec. VI we will
return to this point and analytically prove that when the pe-
riodic potential gets stronger and as a result the energy bands
get narrower, that is, when the system turns into an insulator,
the spin current given by Eq. �11� goes to zero. Below we
will calculate only the spin current polarized along the z axis
and denote this current as JS, i.e., JS�t�
JS

z�t�. The compo-
nents of the spin current polarized along the x and y axes are
zero as shown in Appendix B. The discussion of the differ-
ence between the conventional definition of the spin current
and the spin-current definition used in our work can also be
found in Appendix B.

It is convenient to calculate the traces in Eqs. �9� and �11�
using the basis which diagonalizes both x̂ and �̂z because this
requires to determine only the diagonal elements of the re-
duced density matrix. In a quasi-1D periodic system with
RSOI, the energy spectrum can be related to the one of the
corresponding truly 1D problem without RSOI.34 This links
the Bloch bands of that truly 1D problem to the Bloch sub-
bands of the quasi-1D problem. The general structure of the
results obtained in Ref. 34 is retained in the presence of the
orbit-orbit coupling and a uniform stationary magnetic field
along the z axis. A slight change in the theory is given in
Appendix C. We shall consider electron transport under such
conditions when only a finite number of the Bloch subbands
is involved. The basis which diagonalizes x̂ and �̂z becomes
in this case discrete. The total number of the Bloch subbands
is equal to the product of the number, NB, of the Bloch bands
from the corresponding truly 1D problem without magnetic
field and without spin-orbit coupling, the number, Nt, of the
transverse modes, and the number of the spin states. In this
work we shall use the model with NB=1 and Nt=2. Since
there are only two spin states, the total number of the Bloch
subbands in our problem is equal to four. The representation
in terms of the eigenstates of the coordinate operator for a
model with discrete x values is called discrete variable rep-
resentation �DVR�.35 Let us call �-DVR the representation in
which both the coordinate and spin operators are diagonal.
Denoting the �-DVR basis states as ���
� and eigenvalues of
x̂ and �̂z in a state ��
 through x� and ��, respectively, the
charge and spin currents �Eqs. �9� and �11�� are rewritten as

JC�t� = − e�
�

x�

d

dt
P��t� ,

JS�t� = �
�

��x�

d

dt
P��t� , �12�

where P��t�
����̂�t���
 is the population of the �-DVR
state ��
 at time t.

We are interested in the long-time limit of the currents

J̄C�t� and J̄S�t� averaged over the driving period T=2	 /�
with the time average of a time-dependent function f�t� de-

fined as f̄�t�
�1 /T��t
t+Tdt�f�t��. From Eq. �12� it follows

J̄C�t� = − e�
�

x�

d

dt
P̄��t� ,
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J̄S�t� = �
�

��x�

d

dt
P̄��t� . �13�

The advantage of working in the �-DVR basis is that real-
time path-integral techniques can be used to exactly trace out
the bath degrees of freedom.36,37 Moreover, at driving fre-
quencies larger than the ones characterizing the internal dy-
namics of the quasi-1D system coupled to the bath, the av-

eraged populations P̄��t� can be found from the master
equation,

d

dt
P̄��t� = �

�

�����


̄��P̄��t� − �
�

�����


̄��P̄��t� , �14�

valid at long times. In Eq. �14� 
̄�� is an averaged transition
rate from the state ��
 to the state ��
. In order to obtain
concrete expressions for the averaged currents, the �-DVR
basis must be found explicitly. This is the subject of the next
section.

III. DIAGONALIZATION OF �̂z AND x̂: THE �-DVR
BASIS

The eigenstates of the �̂z operator were found in Ref. 34
�see Eq. �12� therein� for a model without coupling between
the orbital degrees of freedom and magnetic field. The
changes necessary to include those two effects are discussed
in Appendix C. The eigenvalue equation for the �̂z operator
is

�̂z�l,kB, j,�
�,j = ��l,kB, j,�
�,j . �15�

In Eq. �15� l, kB, j, and � stand for the Bloch band index,
quasimomentum, transverse-mode index, and z projection of
the spin, respectively. Since, in the presence of the orbit-orbit
coupling, the periodic potential U�,j�x� �see Appendix C� de-
pends on � and j, we have labeled the right angular bracket
symbol with the subscript � , j. In the ensuing analysis we
follow the same rule and label all the left and right angular
bracket symbols with the subscript � , j, that is, �,j�¯� and
�¯ 
�,j.

It is convenient to start the diagonalization of the coordi-
nate operator by writing its matrix in the ��l ,kB , j ,�
�,j� rep-
resentation:

�,j�
�l�,kB� , j�,���x̂�l,kB, j,�
�,j

= 
 j�,j
��,��,j�l�,kB� + �kso�x̂�l,kB + �kso
�,j . �16�

The diagonal blocks,

�,j�l�,kB� , j,� = 1�x̂�l,kB, j,� = 1
�,j

= �,j�l�,kB� + kso�x̂�l,kB + kso
�,j, ∀ j ,

�,j�l�,kB� , j,� = − 1�x̂�l,kB, j,� = − 1
�,j

= �,j�l�,kB� − kso�x̂�l,kB − kso
�,j, ∀ j , �17�

are unitary equivalent for a given value of the index j and
thus the eigenvalues of x̂ do not depend on �.

As it is shown in Appendix A, the eigenvalues of the
matrix �,j�l� ,kB� �x̂�l ,kB
�,j are

x�;�,m,j = mL + d�;�,j , �18�

where m=0, �1, �2. . ., �=1,2 , . . . ,NB, and the eigenvalues
d�;�,j are distributed within one elementary cell. If, for ex-
ample, the system is divided into the elementary cells in such
a way that the origin of coordinates is at the center of an
elementary cell, then −L /2�d�;�,j �L /2. In Eq. �18� we
have taken into account that the periodic potential U�,j�x�,
introduced in Appendix C, depends on � and j, and thus the
eigenvalues distributed within one elementary cell also ac-
quire a dependence on � and j.

From Eqs. �16� and �18� it follows that one can label the
eigenstates of x̂ with the quantum numbers �, m, j, and �,
that is, as �� ,m , j ,�
�,j, and in the ��l ,kB , j ,�
�,j� representa-
tion these eigenstates have the form:

�,j�
�l,kB, j�,����,m, j,�
�,j = 
 j�,j
��,� �,j�l,kB, j,���,m, j,�
�,j .

�19�

The corresponding eigenvalues are x�;�,m,j,�=x�;�,m,j. From
the eigenvalue equation,

x̂��,m, j,�
�,j = x�;�,m,j��,m, j,�
�,j , �20�

written in the ��l ,kB , j ,�
�,j� representation through the use
of Eq. �16�,

�
l�,kB�

�,j�l,kB + �kso�x̂�l�,kB� + �kso
�,j

� �,j�l�,kB� , j,���,m, j,�
�,j

= x�;�,m,j �,j�l,kB, j,���,m, j,�
�,j , �21�

it follows that

�,j�l,kB, j,� = 1��,m, j,� = 1
�,j = �,j�l,kB + kso��,m
�,j ,

�,j�l,kB, j,� = − 1��,m, j,� = − 1
�,j = �,j�l,kB − kso��,m
�,j .

�22�

Since �� ,m , j ,�
�,j is also the eigenstate of �̂z corresponding
to the eigenvalue ��,m,j,�=�, we infer that the �-DVR basis
states ��
 from the previous section are just the �� ,m , j ,�
�,j
states, that is, ���
�
��� ,m , j ,�
�,j�.

IV. �-DVR REPRESENTATION AND ITS TIGHT-BINDING
MODEL

Let us represent the Hamiltonian Ĥ in the �-DVR basis
obtained in the previous section in order to derive an effec-
tive tight-binding model.

Using the ��� ,m , j ,�
�,j� basis the Hamiltonian Ĥ can be
written as

Ĥ = �
�,m,j,�

��,m�,j�,��

�,j�
���,m�, j�,���Ĥ��,m, j,�
�,j

� ���,m�, j�,��
�,j��,j��,m, j,�� , �23�

with the matrix

SMIRNOV et al. PHYSICAL REVIEW B 78, 245323 �2008�

245323-4



�,j�
���,m�, j�,���Ĥ��,m, j,�
�,j

= �
l,kB,�

��;l,��kB��,j�
���,m��l,kB + ��kso
�,j�

��,j�l,kB + �kso��,m
�,j��;l,kB,��j�,�����;l,kB,�
� �j,�� .

�24�

The tight-binding approximation of Eq. �23� is obtained
if one assumes that the matrix elements �Eq. �24�� with
�m�−m��1 are negligibly small.

We consider temperatures low enough and assume that
electrons populate only the lowest Bloch subbands with l
=1 �i.e., NB=1�. Under this condition the periodic potential
can be of arbitrary shape and the only limitation on it is the
validity of the tight-binding approximation.

Below we thoroughly study the case where the four low-
est Bloch subbands are the ones with l=1, �=1,2 ,3 ,4, and
the only ones which are populated with electrons. For sim-
plicity we consider weak orbit-orbit coupling and calculate
the corresponding eigenenergies ��;l,��kB� and eigenspinors
��;l,kB,��j ,�� retaining only the first two transverse modes,

that is, j=0,1. In this case Ĥ has the form

Ĥ = �
m
��

j,�
��;j,��m, j,�
�,j�,j�m, j,�� + �

j,����

��;j,��;j,�
intra �m�

��m, j,��
�,j�,j�m, j,�� + �
j��j,��,�

��;j�,��;j,�
intra �m�

��m, j�,��
�,j��,j�m, j,�� + �
j�,j,��,�

���;j�,��;j,�
inter,b �m�

��m, j�,��
�,j��,j�m + 1, j,�� + ��;j�,��;j,�
inter,f �m��m

+ 1, j�,��
�,j��,j�m, j,���	 , �25�

where

�m, j,�
�,j 
 �� = 1,m, j,�
�,j , �26�

and we have defined the on-site energies ��;j,� and hopping

matrix elements ��;j�,��;j,�
intra �m�, ��;j�,��;j,�

inter,b �m�, and
��;j�,��;j,�

inter,f �m� as follows

��;j,� 
 �,j�m, j,��Ĥ�m, j,�
�,j ,

��;j�,��;j,�
intra �m� 


�j�,�����j,��
�,j�

�m, j�,���Ĥ�m, j,�
�,j ,

��;j�,��;j,�
inter,b �m� 
 �,j�

�m, j�,���Ĥ�m + 1, j,�
�,j ,

��;j�,��;j,�
inter,f �m� 
 �,j�

�m + 1, j�,���Ĥ�m, j,�
�,j . �27�

Note that

���;j�,��;j,�
intra �m��� = ��;j,�;j�,��

intra �m� , �28�

���;j�,��;j,�
inter,b �m��� = ��;j,�;j�,��

inter,f �m� . �29�

Introducing the notations

��� 
 ��j,��� ,

� = 1 ⇔ �0,1�, � = 2 ⇔ �0,− 1� ,

� = 3 ⇔ �1,1�, � = 4 ⇔ �1,− 1� , �30�

we finally have

Ĥ = �
m
��

�=1

4

��;��m,�
�,��,��m,�� + �
����=1

4

��;��,�
intra �m�

��m,��
�,���,��m,�� + �
�,��=1

4

���;��,�
inter,b�m��m,��
�,���,��m

+ 1,�� + ��;��,�
inter,f�m��m + 1,��
�,���,��m,���� . �31�

Equation �31� represents a tight-binding model which can
now be used to perform actual calculations of quantum trans-
port in a dissipative system.

To conclude this section, we would like to note that, be-
cause of the simultaneous presence of the harmonic confine-
ment and RSOI, the system splits into two subsystems. The
first subsystem is characterized by �=1,4, and the second
one by �=2,3. These subsystems are totally decoupled: there
is no electron exchange between them. Such a state of affairs
persists if one considers more than two transverse modes. In
this work, for simplicity, we only consider one subsystem,
namely, the one with �=1,4. Such uncoupled subsystems
also appear within the hard wall model of the transverse
confinement.38

V. TRANSITION RATES

The tight-binding model introduced in Sec. IV relies upon
the fact that the hopping matrix elements �Eq. �27�� are
small. In this case the second-order approximation for the
averaged transition rates in Eq. �14� can be used giving4,39


̄�;��,�
m�,m =

���;��,�
m�,m �2

�2

� �
−�

�

d�e−��x�;m,� − x�;m�,���
2/��Q���+i����;�−��;���/���

� J0�2F�x�;m,� − x�;m�,���

��
sin���

2
�	 , �32�

where x�;m,�
x�;�=1,m,�=mL+d�;� with d�;�
d�;1,j, ��;��,�
m�,m


 �,��
�m� ,���Ĥ�m ,�
�,� is the hopping matrix element be-

tween the states �m� ,��
�,�� and �m ,�
�,�, J0�x� is the zero-
order Bessel function, and Q��� the twice integrated bath
correlation function:37
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Q��� =
1

	
�

0

�

d�
J���
�2 �coth����

2
�

��1 − cos����� + i sin����	 , �33�

where J��� is given by Eq. �7� and � is the inverse tempera-
ture.

The transition rates are functions of the orbit-orbit cou-
pling strength � because the Bloch amplitudes as well as the
difference �d�
d�;1,0−d�;1,1 depend on �. Within the con-
text of the tight-binding model, the eigenvalues d�;1,0 and
d�;1,1 tend to zero and fulfill �d� / lr�1, where lr

=min�L ,�� /m�0 ,�� /F , . . .�. Consequently, the transition
rates depend on � predominantly through the Bloch ampli-
tudes, and in this work we pay no regard to terms of order
O��d� / lr�. This is also consistent with our model taking into
account only the first two transverse modes. Keeping terms
of order O��d� / lr� would mean that the strength � of the
orbit-orbit coupling is large enough so that one would need
to consider more than just the first two transverse modes
because in this case the nondiagonal elements would be com-
parable with the diagonal ones.

Using the notations,


̄�;��,�
m,m 
 
̄�;��,�

intra , �� � � ,


̄�;��,�
m,m+1 
 
̄�;��,�

inter,b,


̄�;��,�
m+1,m 
 
̄�;��,�

inter,f , �34�

from Eq. �32�, one obtains


̄�;��,�
intra = 0, �35�

and


̄�;��,�
inter,b = ���;��,�

inter,b�m��2J�;��,�,


̄�;��,�
inter,f = ���;��,�

inter,f�m��2J�;��,�, �36�

where

J�;��,� =
1

�2�
−�

�

d�e−L2/�Q���+i����;�−��;���/���

� J0�2FL

��
sin���

2
�	 . �37�

Note that 
̄�;��,�
inter,b and 
̄�;��,�

inter,f do not depend on m due to the
Bloch theorem which leads to a m dependence of ��;��,�

inter,b�m�
and ��;��,�

inter,f�m� only through a phase factor as it is shown in
Appendix D. From Eqs. �29� and �36� it follows that


̄�;�,�
inter,b = 
̄�;�,�

inter,f , �38�


̄�;��,�
inter,b


̄�;�,��
inter,b = 
̄�;��,�

inter,f

̄�;�,��

inter,f . �39�

To calculate the charge and spin currents we additionally
need the transition rates


̄�;�,�� 
 
̄�;�,��
inter,f + 
̄�;�,��

intra + 
̄�;�,��
inter,b. �40�

As pointed out at the end of Sec. IV, the system is split into
two subsystems isolated from each other. Since electron ex-
change between the subsystems is absent, one can write


̄�;1,2 = 
̄�;1,3 = 
̄�;2,1 = 
̄�;2,4 = 
̄�;3,1 = 
̄�;3,4 = 
̄�;4,2 = 
̄�;4,3

= 0. �41�

The last equalities are very useful because they allow us to
significantly simplify the expressions for the charge and spin
currents which are derived in the next section.

VI. CHARGE AND SPIN CURRENTS

The expressions for the stationary averaged charge and
spin currents,

J̄C
� 
 lim

t→�
J̄C�t�, J̄S

� 
 lim
t→�

J̄S�t� , �42�

can be found from the averaged master Eq. �14� which we
rewrite here using the �-DVR indices and tight-binding ap-
proximation introduced in Sec. IV and utilizing the notations
of Sec. V for the transition rates:

d

dt
P̄�;�

m �t� = �
��=1

������

4

�
̄�;�,��
inter,f P̄�;��

m−1�t� + 
̄�;�,��
intra P̄�;��

m �t�

+ 
̄�;�,��
inter,bP̄�;��

m+1�t�� − �
��=1

������

4

�
̄�;��,�
inter,b + 
̄�;��,�

intra

+ 
̄�;��,�
inter,f�P̄�;�

m �t� + �
̄�;�,�
inter,f P̄�;�

m−1�t� + 
̄�;�,�
inter,bP̄�;�

m+1�t��

− �
̄�;�,�
inter,b + 
̄�;�,�

inter,f�P̄�;�
m �t� . �43�

From Eqs. �12� and �43� one finds

J̄C
� = − eL �

�,��=1

4

�
̄�;�,��
inter,f − 
̄�;�,��

inter,b�p�;��
� , �44�

J̄S
� = �

�,��=1

4

��d�;��� − d�;�������
̄�;�,��
inter,f + 
̄�;�,��

inter,b�

+ L���
̄�;�,��
inter,f − 
̄�;�,��

inter,b��p�;��
� , �45�

where we have used Eq. �18�. To derive Eq. �45� we have
additionally made use of Eq. �35�. In Eq. �45� ��
��=1,m,�,
and �1=�3=1, �2=�4=−1 as it follows from Eq. �30�. The
quantities p�;�

� are defined as
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p�;��t� 
 �
m

P̄�;�
m �t�, p�;�

� 
 lim
t→�

p�;��t� , �46�

and they satisfy the constraint

p�;1�t� + p�;2�t� + p�;3�t� + p�;4�t� = 1, ∀ t . �47�

As already mentioned at the end of Sec. IV, we only consider
the subsystem with �=1,4. The properties of the stationary
averaged transport do not depend on initial conditions. We
choose the following ones:

p�;1�t = 0� = 1, p�;4�t = 0� = 0. �48�

Because of constraint �47�, p�;2�t=0�= p�;3�t=0�=0 and
since there is no electron exchange between the subsystems,
the states of the subsystem with �=2,3 remain empty at any
time, p�;2�t�= p�;3�t�=0, ∀ t. This leads to p�;2

� = p�;3
� =0.

Then from the master Eq. �43� with initial condition �48� and
using Eqs. �40� and �41�, one obtains

p�;1
� =


̄�;1,4


̄�;1,4 + 
̄�;4,1

, p�;4
� =


̄�;4,1


̄�;1,4 + 
̄�;4,1

. �49�

Using Eqs. �35�, �38�–�40�, and �49� it follows from Eq. �44�

J̄C
� = 0, �50�

that is, the absence of the stationary averaged charge trans-
port. However, using Eqs. �35�, �38�, �40�, and �49�, we get
from Eq. �45�

J̄S
� =

2L


̄�;1,4 + 
̄�;4,1

�
̄�;1,4
inter,f
̄�;4,1

inter,b − 
̄�;1,4
inter,b
̄�;4,1

inter,f� . �51�

The last expression can be rewritten in terms of the hopping
matrix elements ��;��,�

inter,f�m�. Making use of Eqs. �29�, �35�,
�36�, and �40�, we derive the stationary averaged spin cur-
rent:

J̄S
� = 2L

J�;1,4J�;4,1

J�;1,4 + J�;4,1
����;1,4

inter,f�m��2 − ���;4,1
inter,f�m��2� . �52�

Using Eqs. �52� and �D2� the nonequilibrium stationary av-
eraged spin current can be written as

J̄n−e,S
� = − 2� J�;1,4J�;4,1

J�;1,4 + J�;4,1
−

J�;1,4
�0� J�;4,1

�0�

J�;1,4
�0� + J�;4,1

�0� �
�

L�3kso
2 �0

m
�

kB,kB�

sin��kB − kB��L�Im�F�;kB,kB�
� ,

�53�

where J�;��,�
�0� is given by Eq. �37� with F=0 and the function

F�;kB,kB�
is defined by Eq. �D3�. Note the structure of Eq. �53�.

It is the product of two factors of different physical origin.
The factor in the second line describes the isolated system
and the factor in the first line is purely due to the dissipative
coupling to an external environment. To get Eq. �53� we have

eliminated from J̄S
� the equilibrium spin current arising due

to the noncompensation40 of the spin currents from different
bands of the Rashba-Bloch spectrum of the isolated system.

It turns out that this effect is strong enough to indenture in a
dissipative system. Below we only consider the nonequilib-

rium spin current, J̄n−e,S
� , and not the full one, J̄S

�.
Let us at this point also mention the dependence of the

spin current J̄n−e,S
� on the magnetic field H0. Since the mag-

netic field is applied along the z axis, it couples to the system
through the �̂z operator and thus the hopping matrix ele-
ments ��;1�4�,4�1�

inter,f �m� do not depend on H0. It then follows
that the spin current depends on the magnetic field only
through its dissipative prefactor. The dependence on H0
comes into play through the on-site energies ��;1�4�. The dif-
ference ��;4−��;1 which enters the integrals J�;1�4�,4�1� and
J�;1�4�,4�1�

�0� can be written as

��;4 − ��;1 =
1

N
�
kB

���,1;1
�0� �kB� − ��,0;1

�0� �kB�� + ��0 + 2g�BH0,

�54�

where N is the number of the elementary cells and ��,j;l
�0� �kB�

are the eigenvalues of the truly 1D Hamiltonian

Ĥ0;�,j
1D 


�2k̂x
2

2m
+ U�x̂��1 + �

�

m�0L2� j +
1

2
�	 . �55�

Therefore, in the presence of a transverse in-plane uniform
stationary magnetic field, the existence of the spin current is
possible under the same conditions which were discussed in
Ref. 25. For completeness we list these conditions below.

From Eq. �53� one finds that, as mentioned in Sec. II,
when the electronic states become localized, the stationary
averaged spin current vanishes. Indeed, in this insulating
limit the function F�;kB,kB�

does not depend on the quasimo-
menta kB and kB� and Eq. �53� gives zero.

When the spin-orbit interaction is absent, that is, kso=0,
we get from Eq. �53�

J̄n−e,S
� �kso=0 = 0. �56�

Furthermore, if the orbital degrees of freedom x and z are not
coupled, that is, �=0, it follows from Eqs. �53� and �D6� that

J̄n−e,S
� ��=0 = 0. �57�

Finally, if the periodic potential is symmetric, the Bloch am-
plitudes are real and we find from Eqs. �53� and �D4�

J̄n−e,S
� = 0, for symmetric periodic potentials. �58�

Summarizing the results of this section we conclude that
in order to generate a finite stationary averaged spin-current
three conditions must simultaneously be fulfilled: �1� pres-
ence of the spin-orbit interaction in the isolated system; �2�
finite coupling between the orbital degrees of freedom x and
z; �3� absence of the real-space inversion center in the iso-
lated system.

Among these three conditions the second condition is per-
haps less transparent and a simplified physical interpretation
is necessary. We propose the following physical explanation.
The orbit-orbit coupling leads to the situation in which the
strength of the periodic potential varies across the quasi-1D
wire. The periodic potential is equal to U�x� in the center of
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the wire and gets stronger closer to its edges. Thus the elec-
tron group velocity is larger in the central region of the wire
and decreases closer to the edges. At the same time the elec-
tron distribution across the channel depends on the trans-
verse mode j. It is given by the Hermite polynomials. For
j=0 the electrons populate the center of the wire while for
j=1 they are distributed in regions closer to the edges.
Hence, the electrons with j=0 are faster than those with j
=1. Because of the mixing between the confinement and
RSOI, different transverse modes carry different spin states.
Therefore, we conclude that different spin states have differ-
ent group velocities along the wire. This difference results in
a finite longitudinal spin current.

Finally, one observes that a transverse in-plane uniform
stationary magnetic field alone is not enough to produce the
spin current in a driven dissipative system. The magnetic
field can only affect the magnitude of the spin current when
the properties of the isolated system meet the three condi-
tions derived above.

VII. RESULTS

In this section we show some results obtained numerically
for the theoretical model developed in the previous sections.
As an example we consider an InGaAs/InP quantum wire
structure. The values of the corresponding parameters used
to get the results are similar to the ones from the work of
Schäpers et al.41 In particular, ��0=0.225 meV, �

�2kso /m=9.94�10−12 eV m �which gives kso=4.82
�106 m−1�, and m=0.037m0 �m0 is the free-electron mass�.
The value, g=7.5, of the electron spin g-factor �in our nota-
tions g
−g� /2, where g� is the effective gyroscopic factor
measured experimentally� is taken from Ref. 42. From these
parameters and, for example, for the period of the superlat-
tice L=2.5�� /m�0�0.24 �m, which is easily achievable
technologically at present,43 it follows that ksoL�0.368	.

The asymmetric periodic potential is

U�x� = ��0�2.6�1 − cos�2	x

L
− 1.9�	 + 1.9 cos�4	x

L
�� .

�59�

The bath is assumed to be Ohmic with exponential cutoff:

J��� = �� exp�−
�

�c
� , �60�

where � is the viscosity coefficient and �c is the cutoff fre-
quency. We use �c=10�0.

To present the results we use in all the figures the units of
��0 and �0 for energies and frequencies, respectively. The
viscosity coefficient is taken in units of m�0.

Let us discuss possible values of the driving parameters.
In a dissipationless system �or in a system with weak dissi-
pation� of size L, one should restrict possible values of the
driving amplitude and frequency, 0�FL���0 and 0��
��0, in order to stay within the validity of the model with
the first two transverse modes opened. In a strongly dissipa-
tive system, as in our case, it is not necessary to fulfill the
last inequalities because an electron loses a huge amount of

its energy due to intensive dissipative processes. In general,
our model of a driven strongly dissipative system taking into
account the first four Bloch subbands remains valid if at long
times the electron energy averaged over one period of the
driving force, �av�F ,� ,�� �which is a function of the driving
and dissipation parameters�, is smaller than ��0,
�av�F ,� ,�����0. This can take place even if FL���0 and
���0 because even at such driving the strong dissipation
�large values of �� will consume major amount of the elec-
tron energy.

In Fig. 1 the nonequilibrium spin current as a function of
the amplitude of the external driving is shown for different
values of the z projection of the magnetic field. For small
values of the driving amplitude and small magnetic fields, it
is seen that, if the magnetic field has the same direction as
the z axis, the spin current decreases while the opposite di-
rection of the magnetic field amplifies the spin current. This
behavior can be physically understood from Eq. �54�. Posi-
tive values of H0 can be equivalently considered as larger
values of ��0, that is, of the distance between the transverse
modes. This in turn leads to a decrease in the transition prob-
abilities which suppresses the spin current. On the contrary,
negative values of H0 correspond to smaller values of ��0
leading to an increase in the transition rates and thus the spin
current is enhanced. Another physical explanation is that the
magnetic field aligns the spins along its direction. Therefore,
when H0 is positive or negative the spins are forced to point
in the direction of the z axis or in the opposite direction,
respectively. The spin current gets more polarized in the di-
rection of the z axis for H0�0 or in the opposite direction
for H0�0. As a consequence its magnitude decreases for
H0�0 or increases for H0�0 since it was polarized in the
direction opposite to the one of the z axis in the absence of
the magnetic field.

The same dependence of the spin current on the magnetic
field with small values of its magnitude �as well as for a
small value of the driving amplitude FL=1.0��0� is found in
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FIG. 1. �Color online� Nonequilibrium spin current, J̄n−e,S
� , as a

function of the amplitude, F, of the driving force for different val-
ues of the z projection of the magnetic field H0. Further parameters:
temperature kBT=0.5, spin-orbit coupling strength kso with ksoL
=	 /2, orbit-orbit coupling strength �=0.08, driving frequency �
=0.2, and viscosity coefficient �=0.08.
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Fig. 2 in view of its dependence on the spin-orbit interaction
strength kso. Again for H0�0 the magnitude of the spin cur-
rent gets smaller and for H0�0 it gets larger. Additionally,
one can see that the presence of the magnetic field does not
change the locations of minima and maxima of the spin cur-
rent as a function of kso. This has the following physical
explanation. The minima and maxima in Fig. 2 are related to
the periodicity of the energy spectrum in the k space. In
terms of the band energy versus the quasimomentum k de-
pendence, RSOI produces a horizontal �that is, the energy of
the bands does not change� split of the energy bands as well
as their hybridization. Due to the periodicity this split can be
minimal or maximal for some values of kso which leads to
the corresponding minima and maxima in Fig. 2. The role of
the hybridization is that the split is never zero and thus the
minima of the spin current are not exactly equal to zero. In
contrast to this horizontal split the magnetic field produces a
vertical �that is, along the energy axis� split and it also pro-
duces hybridization. This vertical split is not correlated with
the periodicity of the energy bands in the k space, and thus
the locations of minima and maxima remain untouched by
the magnetic field.

However, the picture explained above is only valid for
small values of the driving amplitude F and magnitude of the
magnetic field �H0� where the spin current has a linear re-
sponse to the magnetic field. When �H0� increases further, the
spin current depends nonlinearly on H0, and a complicated
interplay between the magnetic field, driving, and dissipative
processes develops. This dependence of the spin current on
the magnetic field is depicted in Fig. 3 for different values of
the amplitude of the driving force. In order to stay within the
validity of our model, where only the first two transverse
modes are opened, the magnitude of the magnetic field must
satisfy the condition:

g�B�H0� � 0.5���0 + ���;4,1� , �61�

where ���;4,1
�kB
���,1;1

�0� �kB�−��,0;1
�0� �kB�� /N. For the values

of the parameters used to obtain the numerical results, we

have ���;4,1=−0.07��0. Thus g�B�H0��0.465��0. As it can
be seen from Fig. 3 the magnitude of the spin current decays
for large positive values of H0. This happens because the
distance between the Bloch subbands becomes large and thus
the transition processes are less probable. For a certain nega-
tive value of H0, the magnitude of the spin current has a
maximum after which it starts to decrease and vanishes at
some point H0

�0��0. After this point and for H0�H0
�0� the

spin current reverses its sign and its magnitude increases
again. This behavior clearly demonstrates that the magnetic
field can, without changing its direction, act in phase �i.e.,
destroy the spin transport� with the dissipative processes as
well as out of phase �i.e., intensify the spin kinetics� with
them. Mathematically it comes from the fact that in Eq. �32�
for the transition rates the magnetic field H0 and the imagi-
nary part of the twice integrated bath correlation function
Im�Q���� enter the arguments of the same trigonometric
functions. This is clarified by Eq. �37� appropriately rewrit-
ten below for the case ��=1 and �=4:

J�;1,4 =
2

�2�
0

�

d�e−L2/�QR���cos�����;4,1

�
+ �0 +

2g�BH0

�
��

−
L2

�
QI���	J0�2FL

��
sin���

2
�	 , �62�

where QR���
Re�Q����, and QI���
 Im�Q����. The physical
explanation of why in our system the magnetic field interacts
only with the friction part of the dissipation and not with its
noise part is rooted in the roles which the magnetic field and
dissipation play for quantum coherence. On the one side
quantum coherence in a dissipative system dies out due to
the noise part of the Feynman-Vernon influence weight func-
tional. On the other side, within the Feynman path-integral
formalism, we see that in our system a transverse in-plane
uniform stationary magnetic field cannot produce the addi-
tional phase due to the integral of the vector potential along
the Feynman paths �see Appendix C�. Thus in our system
quantum coherence is totally insensitive to the magnetic field
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FIG. 2. �Color online� Nonequilibrium spin current, J̄n−e,S
� , as a

function of the spin-orbit coupling strength, kso, for different values
of the z projection of the magnetic field H0. The driving amplitude
is F=1.0��0 /L. The other parameters are the same as in Fig. 1.
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FIG. 3. �Color online� Nonequilibrium spin current, J̄n−e,S
� , as a

function of the magnetic field, g�BH0, for different values of am-
plitude of the driving force, F. The other parameters are the same as
in Fig. 1.
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and as a result cannot interact with the noise part of the
Feynman-Vernon influence weight functional.

The mutual impact of the magnetic field and quantum
dissipative processes on the spin current in the system is
shown in Fig. 4 where the spin current is plotted versus the
magnetic field, H0, and the viscosity coefficient, �, plays a
role of a parameter. Again for large positive values of H0 the
spin current vanishes. As expected, the spin current gets
smaller if the dissipation in the system gets stronger. When
the dissipation gets weaker ��=0.05 and �=0.03 curves�, the
oscillations of the spin current become observable. These
oscillations are related to the interaction between the mag-
netic field and driving and can be described in terms of the
photon emission/absorption processes36 since changing H0 is
equivalent to changing the distance between the correspond-
ing Bloch subbands.

The minima in Figs. 3 and 4 at negative values of H0
appear as a result of a cooperative action of the orbit-orbit
coupling, confinement, magnetic field, driving, and dissipa-
tion. Its location changes when the strength of the driving
and dissipation varies.

For completeness in Fig. 5 we also show the spin current
as a contour plot using the variables H0 and �. The main
effect of the interaction between the electrons and external
environment is the electron dressing. The dressed electrons
are heavier and as a result less mobile. Since the spin degree
of freedom is carried by these dressed electrons, the spin
current decreases when the viscosity coefficient grows.

VIII. CONCLUSION

In conclusion, we have studied averaged stationary quan-
tum transport in a driven dissipative periodic quasi-one-
dimensional �1D� system with Rashba spin-orbit interaction
�RSOI� and placed in a transverse in-plane uniform station-
ary magnetic field. For the case of moderate-to-strong dissi-
pation, it has been shown that the averaged stationary charge
transport is well suppressed as soon as it is restricted within
the Bloch subbands grown out of the same Bloch band of the

corresponding truly 1D problem without RSOI. However in
the same situation the averaged stationary spin transport is
activated. The analytical expression for the spin current has
been derived and its behavior as a function of the driving
parameters, dissipation, spin-orbit interaction strength, orbit-
orbit coupling strength, and a transverse in-plane uniform
stationary magnetic field has been analyzed. Our results on
the spin transport in the system have been presented and
thoroughly discussed. It has been found that the spin current
as a function of the magnetic field shows a highly nontrivial
dependence for different values of the dissipation and driving
parameters. In particular, increasing the magnitude of the
magnetic field does not always lead to a monotonous re-
sponse in the magnitude of the spin current. The magnitude
of the spin current can have maxima after which its depen-
dence on the magnitude of the magnetic field changes to the
opposite one. Moreover, the spin current as a function of the
amplitude of an external longitudinal ac electric field has
reversals of its direction when the system is placed in a finite
transverse in-plane uniform stationary magnetic field. Also
as a function of this magnetic field the spin current changes
its direction at finite values of the amplitude of the ac electric
field. Such behavior is undoubtedly related to a deep corre-
lation between the dissipative processes and magnetic-field
effects in the system.
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APPENDIX A: EIGENVALUE STRUCTURE OF THE
COORDINATE OPERATOR IN A SUBSPACE GENERATED

BY BLOCH STATES OF A FINITE NUMBER OF
BANDS

In this appendix we consider a physical property with the
corresponding quantum-mechanical operator which, when
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operating in the Hilbert space, has a continuum spectrum and
show how this continuum spectrum can turn into a discrete
one under a certain restriction of the Hilbert space. To be
specific we constrict the Hilbert space to a subspace using
some of the Bloch states and consider how the coordinate
operator changes its spectrum.

1. Introduction

In many problems of condensed-matter theory one is not
usually interested in the full band structure of a solid but
rather in a few bands most important for the relevant physics
of a system. For example, in metals one or a few bands with
an energy range containing the Fermi energy are most im-
portant since the main contributions to transport properties
come almost only from those bands. Taking into account
only a few Bloch bands leads to a restriction of the Hilbert
space to a subspace which is then used to describe physical
properties.

2. Truncation of the Hilbert space using Bloch states

Let H be the Hilbert space of all possible states and let us
choose in this space the basis of Bloch’s states ��l ,kB
�:

�x�l,kB
 = eikBxul,kB
�x� ,

ul,kB
�x + L� = ul,kB

�x� ,

∀kB � BZ, l = 1,2, . . . , �A1�

where L is the period of the Bloch amplitude ul,kB
�x� and BZ

stands for the first Brillouin zone.
Any vector ��
�H represents a linear combination

��
 = �
l=1

�

�
kB�BZ

cl,kB
�l,kB
 . �A2�

Another basis ��
 is obtained using a transformation

��
 = Û−1�l,kB
, ∀ kB � BZ, l = 1,2, . . . , �A3�

where Û is an arbitrary unitary operator.

Let us consider an operator Ô corresponding to an observ-
able O. Its matrix representations in two bases �A1� and �A3�
are

OB = �l�,kB� �Ô�l,kB
 ,

∀kB,kB� � BZ, l,l� = 1,2, . . . ,

O� = ����Ô��
, ∀ �,��. �A4�

The eigenvalues ��i� of the two matrices �Eq. �A4�� are the
same and represent all possible values of the observable O.

Now let us consider a subspace S�H generated by
Bloch’s states corresponding to a finite number, NB, of bands.
A vector ��S
�S has the form:

��
 = �
i=1

NB

�
kB�BZ

cli,kB
�li,kB
 . �A5�

In this subspace the operator Ô has the matrix representa-
tion:

OB
S = �li�,kB� �Ô�li,kB
 ,

∀kB,kB� � BZ, i,i� = 1,2, . . . NB. �A6�

Now the eigenvalues ��n
S� of Eq. �A6� do not represent all

possible values of the observable O but they only give ap-

proximate values of some of them. If the operator Ô corre-
sponds to a continuous observable with the spectrum from
−� to �, the eigenvalues ��n

S� are some of the eigenvalues
��i�, that is, in this case ��n

S�� ��i�.
A new basis ��S� of the subspace S is related to the Bloch

one as

��S
 = ÛS
−1�li,kB
 ,

∀kB � BZ, i = 1,2, . . . ,NB, �A7�

where now ÛS
−1 is not an arbitrary unitary operator but a

unitary operator with the following property:

ÛS: �v
 � S ⇒ ÛS�v
 � S, ∀ �v
 � S . �A8�

In this case the matrix

O�
S = ���S�Ô��S
, ∀ ��S,�S �A9�

has the same set of eigenvalues ��n
S� as the matrix OB

S in Eq.
�A6�.

3. Example: coordinate

Let us specify the observable O from the preceding sec-
tion to be particle’s coordinate q with the corresponding op-
erator denoted as q̂. We consider the operator q̂ in the sub-
space S. Its matrix with respect to the Bloch basis is

qB
S = �li�,kB� �q̂�li,kB
 ,

∀kB,kB� � BZ, i,i� = 1,2, . . . ,NB. �A10�

Let us choose the translational operator as the unitary opera-

tor ÛS from the preceding section, that is,

ÛS�a� = ei/�ap̂. �A11�

It is obvious that for an arbitrary value of a the operator

ÛS�a� does not satisfy property �A8�. However, in the case
a=L a Bloch state �l ,kB
 is translated into a Bloch state with
the same l and kB, and thus Eq. �A8� is fulfilled. Hence, the
matrix

q̃B
S = �li�,kB� �ÛS�L�q̂ÛS

−1�L��li,kB
 ,
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∀kB,kB� � BZ, i,i� = 1,2, . . . ,NB �A12�

has the same eigenvalues as the matrix qB
S in Eq. �A10�. But

due to the equality

ÛS�L�q̂ÛS
−1�L� = q̂ + L , �A13�

the two matrices qB
S and q̃B

S are related as follows:

�li�,kB� �ÛS�L�q̂ÛS
−1�L��li,kB
 = �li�,kB� �q̂�li,kB
 + L
i�,i
kB� ,kB

,

∀kB,kB� � BZ, i,i� = 1,2, . . . ,NB. �A14�

From Eq. �A14� it follows that the eigenvalues of the matrix
qB

S are invariant under a shift equal to jL with j being an
integer. That is, for any �k

S� ��n
S�, there exists �m

S � ��n
S� such

that

�k
S = jL + �m

S . �A15�

Let us denote through �dk
S� those eigenvalues of qB

S the dis-
tance between which is less than L,

�dr
S − dr�

S � � L, ∀ dr
S,dr�

S � �dk
S� , �A16�

and which are in the zeroth elementary cell. Then each of the
eigenvalues ��n

S� of the matrix qB
S is obtained from its corre-

sponding eigenvalue dm� �dk
S� by a shift jL with a proper

integer j. It means that each elementary cell contains the
same number of eigenvalues of the coordinate operator.
Since the total number of the eigenvalues ��n

S� is equal to
NBN, where N is the number of the elementary cells, we
conclude that there are NB eigenvalues in each elementary
cell. This gives us the final expression for the eigenvalues of
the matrix qB

S �N is even to be definite�:

�m,j
S = jL + dm

S , m = 1,2, . . . ,NB,

j = −
N

2
+ 1,−

N

2
+ 2, . . . ,− 1,0,1, . . . ,

N

2
− 1,

N

2
,

�A17�

and N→� afterward.

APPENDIX B: POLARIZATION OF THE SPIN CURRENT
ALONG THE x AND y DIRECTIONS.

1. Conventional spin current

In Ref. 34 it was shown that in an isolated system �with-
out any external magnetic field� the only nonvanishing spin
polarization is along the confinement direction, that is, along
the z axis. A natural question is then what is going on in an
open driven system in a uniform stationary magnetic field
applied along the z axis. External force �4� and bath Hamil-
tonian �6� couple to the longitudinal orbital degree of free-
dom, that is, to the x coordinate of our system. Because of
the spin-orbit coupling the external force and bath affect the
spin dynamics of electrons in the quasi-1D system. The mag-
netic field also influences the spin transport. Can it then hap-
pen that the longitudinal spin current acquires components
polarized along the x and y axes? Below we show that the

components JS
x,y�t� of spin current �11� identically vanish.

2. Longitudinal spin current components JS
x,y(t) polarized

along the x and y axes

The expressions for the spin currents,

JS
x,y�t� =

d

dt
Tr��̂x,yx̂�̂�t�� , �B1�

can easily be found using the �-DVR basis ��� ,m , j ,�
�,j�
introduced in Sec. III:

JS
x�t� = 2

d

dt
TrB �

�,m,j
�mL + d�;�,j�Re��,j��,m, j,��

= + 1�Ŵ�t���,m, j,� = − 1
�,j� , �B2�

JS
y�t� = − 2

d

dt
TrB �

�,m,j
�mL + d�;�,j�Im��,j��,m, j,�� = + 1�Ŵ�t�

���,m, j,� = − 1
�,j� , �B3�

where we have explicitly written the trace over the bath de-
grees of freedom in order to work further with the �-DVR

matrix elements of the full statistical operator Ŵ�t�.

3. Selection rules for the �-DVR matrix elements of the full
statistical operator

It turns out that the case of a harmonic confinement al-
lows one to formulate selection rules for the �-DVR matrix
elements of the full statistical operator. These selection rules
are very useful for understanding some of the properties of
the spin transport.

To find the selection rules mentioned above, let us decom-

pose the Hamiltonian Ĥ in Eq. �2� into

Ĥ = Ĥ0 + ĤR−Z, �B4�

where

Ĥ0 =
�2k̂2

2m
+

m�0
2ẑ2

2
+ U�x̂��1 + �

ẑ2

L2� , �B5�

ĤR−Z = −
�2kso

m
��̂xk̂z − �̂zk̂x� − g�B�̂zH0

= −
�2kso

m
��̂xk̂z − �̂zk̂x�� , �B6�

and k̂x�= k̂x−g�BH0m /�2kso. The full statistical operator has

the form Ŵ�t�= Û�t , t0�Ŵ�t0�Û†�t , t0�, where the evolution

operator Û�t , t0� is given as the time-ordered exponent
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Û�t,t0� = T exp�−
i

�
�

t0

t

dt�Ĥfull�t��	
= �

n=0

� �−
i

�
�n�

t0

t

dtn¯�
t0

t2

dt1Ĥfull�tn� ¯ Ĥfull�t1� .

�B7�

Only the terms of ĤR−Z with odd powers contain the spin
operators. These terms are linear in �̂x and �̂z or bilinear in
these spin operators which is equivalent to being linear in �̂y.
Contributions to the matrix elements �,j�� ,m , j ,��=

+1�Ŵ�t��� ,m , j ,�=−1
�,j come from the first-order terms in
�̂x. It is easy to see that these terms represent products of the

factors �Ĥ0+ Ĥext�tk�+ Ĥbath� ordered chronologically �we
mean the chronological ordering on the Keldysh contour44

and thus operators from Û†�t , t0� are also included under this
terminology�, an odd number of factors k̂z distributed in be-
tween �Ĥ0+ Ĥext�tk�+ Ĥbath� in all possible ways and a num-
ber �even or odd� of factors k̂x� also distributed in between
�Ĥ0+ Ĥext�tk�+ Ĥbath� in all possible ways. Such a structure is
related to the fact that the Rashba-Zeeman Hamiltonian,
ĤR−Z, is bilinear in the operators �̂x and k̂z. To clarify our
above statement we write down the third order term coming,

for example, from Û�t , t0� �a similar result is obtained for

products which are composed from different, Û�t , t0�,
Û†�t , t0�, or Ŵ�t0�, parts of the full statistical operator�:

Ĥfull�t3�Ĥfull�t2�Ĥfull�t1� = ĤR−Z
3 + ĤR−Z

2 �Ĥ0 + Ĥext�t1� + Ĥbath� + ĤR−Z�Ĥ0 + Ĥext�t2� + Ĥbath�ĤR−Z + ĤR−Z�Ĥ0 + Ĥext�t2� + Ĥbath�

� �Ĥ0 + Ĥext�t1� + Ĥbath� + �Ĥ0 + Ĥext�t3� + Ĥbath�ĤR−Z
2 + �Ĥ0 + Ĥext�t3� + Ĥbath�ĤR−Z�Ĥ0 + Ĥext�t1�

+ Ĥbath� + �Ĥ0 + Ĥext�t3� + Ĥbath��Ĥ0 + Ĥext�t2� + Ĥbath�ĤR−Z + �Ĥ0 + Ĥext�t3� + Ĥbath��Ĥ0 + Ĥext�t2�

+ Ĥbath��Ĥ0 + Ĥext�t1� + Ĥbath� . �B8�

Since for a harmonic confinement all the factors �Ĥ0

+ Ĥext�tk�+ Ĥbath� and k̂x� couple states with indices j and j�
only of identical parity and the factors k̂z

2m+1 couple states
with indices j and j� only of opposite parity, we conclude

that the matrix elements �,j�� ,m , j ,��= +1�Ŵ�t��� ,m , j ,�=
−1
�,j, being diagonal in j, are equal to zero:

�,j��,m, j,�� = + 1�Ŵ�t���,m, j,� = − 1
�,j = 0. �B9�

The selection rules �Eq. �B9�� represent a specific property of
systems with a harmonic confinement. From Eq. �B9� one
gets

JS
x,y�t� = 0. �B10�

In spite of the fact that this result is only valid for the case of
a harmonic confinement it is still general in two respects: �1�
it is valid not only for the stationary state but for all times
t� t0; �2� the external force F�t� is arbitrary.

4. Role of the spin-current definition

In light of the mathematical formalism of the this appen-
dix, it is now convenient to discuss the difference between
the conventional spin-current definition and the definition of
the spin current used in our work, that is, the definition in-
troduced by Shi et al.29 We will consider the z-polarized
components of the spin currents obtained from the two defi-
nitions. The conventional spin-current operator and the con-

ventional spin current will be denoted as ĴS
conv�t� and JS

conv�t�,

respectively. The spin-current operator and the spin current

which are used in our work will be denoted as ĴS�t� and JS�t�,
respectively.

The two definitions and the difference between them are

JS�t� =
d

dt
��̂zx̂�, JS

conv�t� = �̂z
dx̂

dt
,

JS�t� − JS
conv�t� =

d�̂z

dt
x̂ . �B11�

One easily finds that

d�̂z

dt
= −

2�kso

m
�̂yk̂z. �B12�

Thus the relation between the spin currents is

JS
conv�t� = JS�t� + i

2�kso

m
TrB �

�,m,j
�mL + d�;�,j���,j��,m, j,��

= + 1�k̂zŴ�t���,m, j,� = − 1
�,j − �,j��,m, j,��

= − 1�k̂zŴ�t���,m, j,� = + 1
�,j� . �B13�

The second term in Eq. �B13� can be finite for our system. To

show this we consider the product Ĥfull�t3�Ĥfull�t2�Ĥfull�t1� in

Eq. �B8�. This product contains, for example, the term Ĥ3

where Ĥ is given by Eq. �B4�. We can write this term as
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Ĥ3 = Ĥ0
3 + ��2kso

m
�2

Ĥ0k̂2 −
�2kso

m
�Ĥ0

2��̂xk̂z − �̂zk̂x��

+ Ĥ0��̂xk̂z − �̂zk̂x��Ĥ0� −
�2kso

m
��̂xk̂z − �̂zk̂x��Ĥ0

2

− ��2kso

m
�3

��̂xk̂z − �̂zk̂x��k̂
2 + ��2kso

m
�2

�k̂zĤ0k̂z + k̂x�Ĥ0k̂x�

+ i�̂y�k̂zĤ0k̂x� − k̂x�Ĥ0k̂z� + k̂2Ĥ0
2� . �B14�

From Eq. �B14� we see that the operator k̂zŴ�t� has terms
such as

i��2kso

m
�2

k̂z�̂y�k̂zĤ0k̂x� − k̂x�Ĥ0k̂z� , �B15�

which are even with respect to k̂z and odd with respect to �̂y.
Therefore, in general we have

�,j��,m, j,�� = + 1�k̂zŴ�t���,m, j,� = − 1
�,j − �,j��,m, j,��

= − 1�k̂zŴ�t���,m, j,� = + 1
�,j � 0, �B16�

which means that the two spin-current definitions are differ-
ent in our problem. The physical reason for this can be un-
derstood from Eq. �B15�. The term given by Eq. �B15� is

finite since k̂x� and k̂z do not commute with Ĥ0. It happens
because of the presence of both the periodic potential and the
confinement as it is obvious from Eq. �B5�. Thus we con-
clude that unlike free Rashba electrons the two definitions of
the spin current are not equivalent for Rashba-Bloch elec-
trons with a transverse confinement.

As one can see from Eqs. �13�, �32�, and �43� in the in-

sulating limit, J̄S�t�→0. This is just a consequence of the fact
that the spin-current definition which we use represents a full
derivative. It is quite reasonable from the physical point of
view that the spin ratchet effect being a transport phenom-
enon is absent in insulators. However, the conventional defi-
nition of the spin current is not a full derivative. The spin
current JS

conv�t� differs from the spin current JS�t� by the sec-
ond term in Eq. �B13�. There is not any general physical
reason for this term, averaged over one driving period, to
vanish in the insulating limit at long times because it is not
proportional to the time derivative of the averaged popula-
tions of the states but it is proportional to the averaged non-
diagonal �in the spin and transverse-mode subspaces� ele-
ments of the reduced statistical operator. These averaged
nondiagonal elements can in general be finite in insulators.
The spin ratchet effect obtained from the conventional defi-
nition of the spin current could then take place in insulators
which to our opinion would be unphysical.

APPENDIX C: EIGENENERGIES AND EIGENSPINORS IN
THE PRESENCE OF ORBIT-ORBIT COUPLING AND

A UNIFORM STATIONARY MAGNETIC FIELD ALONG
THE z AXIS

In Ref. 34 periodic structures formed in a 2DEG with
RSOI have been considered. However the influence of an

external homogeneous stationary magnetic field on the en-
ergy spectrum has not been studied. Here we generalize the
results of Ref. 34 to the case of a uniform stationary mag-
netic field applied along the z axis. Afterward we discuss the
orbit-orbit coupling introduced in the main text in Eq. �2�.

1. System’s Hamiltonian and the general eigenvalue
equation

For an arbitrary potential V�z� �not necessarily confine-
ment� along the z axis and a uniform stationary magnetic
field applied along the z axis �2DEG is in the x-z plane�, the
Hamiltonian reads

Ĥ =
�2k̂2

2m
+ V�ẑ� −

�2kso

m
��̂xk̂z − �̂zk̂x� + U�x̂� − g�B�̂zH0.

�C1�

In Eq. �C1� H0 is the z component of the magnetic field H
= �0,0 ,H0� and the Landau gauge, A= �−H0y ,0 ,0�, has been
chosen. Additionally we have used the fact that in a 2DEG
y=0. This choice effectively gives only the Zeeman term.
The eigenstates of Hamiltonian �C1� are Bloch spinors with
the spinorial amplitude given as �see Ref. 34�

ul,kB,��x; j,�� = ul,kB+�kso
�x��l,kB,��j,�� , �C2�

where ul,kB
�x� is the Bloch amplitude of the corresponding

truly 1D problem without the magnetic field and without
RSOI, and �l,kB,��j ,�� is the eigenspinor. This eigenspinor is
obtained from the solution of the eigenvalue equation for
Hamiltonian �C1�:

�
j�,��

�
 j,j�
�,����l
�0��kB + �kso� − g�B�H0 + � j

z −
�2kso

2

2m
	

−
�2kso

m
�1 − 
�,����j�k̂z�j�
��l,kB,��j�,���

= �l,��kB��l,kB,��j,�� . �C3�

2. Harmonic confinement

The case of a harmonic confinement is characterized by

the following matrix elements of the operator k̂z:

�j�k̂z�j�
 = � i
 j,j��1
�� j +

1

2
 

1

2
�m�0

2�
, �C4�

and eigenenergies � j
z:

� j
z = ��0� j +

1

2
� . �C5�

Therefore the only change in comparison with Ref. 34 is in
the diagonal matrix elements of the Hamiltonian. Reproduc-
ing the same calculations as in Ref. 34, that is, taking into
account only the first two transverse modes �j=0,1, �
= �1, �=1,2 ,3 ,4�, one finds that the only change in the
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final results for the eigenenergies and eigenspinors consists
in replacing the function �l

−�kB� with

�l
−�kB;H0� =

�l
�0��kB + kso� − �l

�0��kB − kso�
2

− g�BH0,

�C6�

where we have explicitly shown the dependence on the z
component H0 of the magnetic field. The expressions for the
eigenenergies and eigenspinors written through the function
�l

−�kB� in Ref. 34 are unchanged. Also the structure �that is,
the zero and nonzero components� of the four dimensional
eigenspinors is the same.

The time-reversal symmetry is now broken and as a result
the symmetry relations between the eigenenergies and eigen-
spinors hold only if one simultaneously changes the direction
of the magnetic field. For the eigenenergies we have

�l,�=1�kB;H0� = �l,�=2�− kB;− H0� ,

�l,�=3�kB;H0� = �l,�=4�− kB;− H0� . �C7�

For the eigenspinors the symmetry relations are written as

�l,kB,�=1�j = �0,1�, � = �+ 1,− 1�;H0� = �l,kB,�=2�j = �0,1�,

� = �− 1, + 1�;− H0� ,

�l,kB,�=3�j = �0,1�, � = �− 1, + 1�;H0� = �l,kB,�=4�j = �0,1�,

� = �+ 1,− 1�;− H0� , �C8�

where it is also taken into account that the z projection of the
spin operator �and as a result its eigenvalues� changes its sign
under the time reversal. The only nonvanishing polarization
is again the one along the confinement �and also magnetic
field� direction. The symmetry relations for its components
are

Pl,�=1,4
�z� �kB;H0� = − Pl,�=2,3

�z� �− kB;− H0� . �C9�

Finally, we would like to note that since for the model with
the first two transverse modes an operator even with respect
to ẑ is effectively diagonal, the results obtained above remain
valid with the following change. The corresponding truly 1D
problem without RSOI and transverse confinement has to be
solved now not for the periodic potential U�x� but for the
periodic potential U�,j�x�
U�x��1+���j+1 /2� /m�0L2�.
Thus the solution of that truly 1D problem acquires a depen-
dence on the transverse-mode quantum number j through the
periodic potential dependence on that quantum number:
�l

�0��kB�→��,j;l
�0� �kB�, �l ,kB
→ �l ,kB
�,j. This does not change

the structure �location of zero and nonzero entries� of the
resulting 4�4 matrix which is thus diagonalized in the same
manner as in Ref. 34. We label the eigenenergies and eigen-
spinors obtained from this diagonalization as ��;l,��kB ;H0�
and ��;l,kB,��j ,� ;H0� to stress their dependence on the orbit-
orbit coupling strength �. The symmetry relations �C7�–�C9�
are, of course, unchanged.

APPENDIX D: BLOCH STATES IN THE DVR
REPRESENTATION

The scalar products �,j�� ,m � l ,kB
�,j are nothing else than
the Bloch states of the corresponding truly 1D problem with-
out the magnetic field and without RSOI in the representa-
tion of the coordinate operator x̂ operating on the subspace
S�H, see Appendix A. Thus using the eigenvalues �given in
Appendix A� of this coordinate operator, we have

�,j��,m�l,kB
�,j = eikB�mL+d�;�,j�u�,j;l,kB

DVR �d�;�,j� , �D1�

where we denoted the Bloch amplitude with the abbreviation
DVR in order to stress that it originates from the discrete
variable representation and differs from the one which origi-
nates from the continuum variable representation.

The difference of the squares of the absolute values of the
hopping matrix elements, ���;1,4

inter,f�m��2 and ���;4,1
inter,f�m��2, in

Eq. �52� can now be expressed in terms of the DVR Bloch
amplitudes as

���;1,4
inter,f�m��2 − ���;4,1

inter,f�m��2

= −
�3kso

2 �0

m
�

kB,kB�

sin��kB − kB��L�Im�F�;kB,kB�
� , �D2�

where we have introduced a function F�;kB,kB�
defined as

F�;kB,kB�
= u�,0;1,kB+kso

DVR �d�;1,0�u�,1;1,kB�−kso

DVR �d�;1,1�

� �u�,1;1,kB−kso

DVR �d�;1,1�u�,0;1,kB�+kso

DVR �d�;1,0���.

�D3�

The function F�;kB,kB�
has two useful properties which directly

follow from its definition �D3�. The first property comes
from the fact that F�;kB,kB�

is real if the Bloch amplitudes are
real:

Im�u�,j;1,kB

DVR �d�;1,j�� = 0 ⇒ Im�F�;kB,kB�
� = 0. �D4�

The second property is that F�=0;kB,kB�
is an even function in

both of its arguments. Indeed, when �=0, we have
u�,j;l,kB

�x�=ul,kB
�x�, d�;�,j =d�, that is,

F�=0;kB,kB�
= u1,kB+kso

DVR �d1�u1,kB�−kso

DVR �d1�

� �u1,kB−kso

DVR �d1�u1,kB�+kso

DVR �d1���. �D5�

One then finds from Eq. �D5� that F�=0;−kB,kB�
=F�=0;kB,kB�

and
F�=0;kB,−kB�

=F�=0;kB,kB�
. As a consequence, from this property

one gets

Im�F�=0;−kB,kB�
� = Im�F�=0;kB,kB�

� ,

Im�F�=0;kB,−kB�
� = Im�F�=0;kB,kB�

� , �D6�

which means that Im�F�=0;kB,kB�
� is even in kB and kB� . The

same is also valid for Re�F�=0;kB,kB�
�.
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